申请书范文网

申请书 > 入党申请书 > 导航

2024高中数学教案完整版(精选六篇)

发表时间:2024-10-28

作为一名默默奉献的教育工作者,常常要写一份优秀的说课稿,是说课取得成功的前提。说课稿应该怎么写才好呢?以下是小编收集整理的高一数学说课稿,欢迎阅读,希望大家能够喜欢。

2024高中数学教案完整版 篇1

教学目标:

1、使学生进一步理解用字母表示数的意义和作用。

2、能正确运用字母表示常用数量关系。

3、能较熟练地利用公式、常用数量关系求值。

知识重点、难点:

能正确运用字母表示常用数量关系。

教学过程:

一、复习。

1、用字母表示数,有哪些好处?但要注意什么?

2、用字母a、b、c表示加法结合律、乘法交换律、乘法分配律等。请学生结合字母表示的运算定律说说其含义。

3、用S表示面积,C表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。

4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。

2×3a×714+ba÷7a×a5-x0.6×0.6

二、新授。

1、教学:

(1)引导学生看书提问:从图、表中你了解到哪些信息?

A、爸爸比小红大30岁。B、当小红1岁时,爸爸()岁。

师:这些式子,每个只能表示某一年爸爸的年龄。

(2)启发学生:你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)

结合讨论情况师适时板书:

法1:小红的年龄+30岁=爸爸的年龄

法2:a+30

提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。

在式子a+30中,a表示什么?30表示什么?a+30表示什么?

(a表示小红的年龄,30表示爸爸比小红大的年龄,a+30即表示爸爸的年龄)

想一想:a可以是哪些数?a能是200吗?为什么?

(3)结合关系式解答:当a=11时,爸爸的年龄是多少?学生把算式和

结果填在书上。

2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。

引导学生看书讨论:(可分成四人小组进行讨论)

(1)从图、表中你了解到哪些信息?

(2)你能用含有字母的式子表示出人在月球上能举起的质量吗?

(3)式子中的字母可以表示哪些数?

(4)图中小朋友在月球上能举起的质量是多少?

请小组派代表回答以上问题。

4、总结:今天你学会了什么?有哪些收获?

课堂练习:

1、独立完成P48做一做集体评议。

2、请学生结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?

3、独立解答P49第4题做完后在投影仪上展示评议。(问问字母、式子表示的含义)

2024高中数学教案完整版 篇2

教学内容

北师大版四年级下册数学85—87页。

教学目标

1.在具体情境中初步理解并学会用字母表示数,会用含有字母的式子表示简单的数量、数量关系和计算公式,会求含有字母式子的值。

2.经历把实际问题用含有字母的式子进行表达的抽象过程,体会用字母表示数的简洁、便利,发展符号感,培养学生的抽象概括能力。

3.在用简单符号语言表达交流的过程中,感受数学表达方式的严谨性、概括性,增强对数学的好奇心和求知欲。

教学重点

经历由数字表示数到用字母表示数的过程,初步学会在具体情境中用含有字母的式子表示简单的数量、数量关系和计算公式。

教学难点

有含有字母的式子表示简单的数量、数量关系。

教学准备

学案、课件

教学过程

一、创设情境,导入新知

和学生交流植树的事情,让学生感知生活中的未知数量。

二、小组合作,探索新知

(一)1.结合“盒子里放小球”的例子让学生自主思考,小组交流初步感知用字母和含有字母的式子来表示数。

2.通过练习引出含字母式子的简写形式并适当练习。

(二)通过老师和学生的年龄问题让学生深入感知含字母的式子既可以表示数量,也可以表示数量关系。

三、组织练习,实践应用

完成学案中训练卡的1、2题。

四、总结提高,深化新知

谈谈这节课的收获和感受。

板书设计

字母表示数

字母-----------未知数 任意数

字母式----------运算结果 数量 关系

教学反思

本课时“字母表示数”是简易方程的第一课时,总体上讲本节课着重围绕三个问题:一是让学生知道为什么要用字母表示数;二是让学生结合具体的例子明白字母可以表示哪些数;三是通过老师和学生年龄的例子让学生体会用字母、含字母的算式怎么去表示数,表示数量关系。

在设计本课时我尽可能多地创设一些有趣的情景,使学生体会字母表示数的意义,在学生初步了解用字母表示运算律的基础上理解用字母表示数的意义,学会用字母表示数,感受字母的不同取值范围,从而体会用字母表示数的作用,经历把生活问题转化为数学问题的抽象过程。这一课的内容,看似浅显、平淡,但它是由具体的数和运算符号组成的式子过渡到含有字母的式子,是学生数学认知上从数向代数的一个转折,也是认识过程上的一次飞跃。其整个过程实质上是从个别到一般的抽象化过程。而本质上的目标是要教给学生一些抽象化后的表达方式:即学生只有在这节“用字母表示数”的课上真正掌握一些技能后,他们才会在个别到一般的抽象化过程中用数字和字母、符号建构起一些数学模型来。因而本节课的教学在学生用简易方程中有着特殊的地位。

对于“用字母表示数”,除了内容比较抽象以外,其中的规律探寻也有一定难度。教学中,首要的是唤醒学生已有的生活经验。所以我一开课创设和学生一起去植树的谈话式导入。其次,借助所学知识字母表示运算律让学生在特定的环境下感知用字母表示数的作用,渗透符号化的数学思想。另外,课上通过一系列富有思考性小组合作学习的活动,培养学生提出问题、交流问题和解决问题的能力。

不足之处:

1、课堂节奏把控不到位,学生没经行独立练习。

2、小组合作的方式没能完全带动起来,优等生带动学困生的教学方式没能充分发挥作用。(请各位领导老师多提宝贵意见)

2024高中数学教案完整版 篇3

一、教材分析

1.教材内容

本课是全国中等职业技术学校通用教材(劳动版)《数学》上册第二章第二节《函数的概念及性质》内容,该节内容包括:函数的概念,函数的表示方法,函数的单调性。其中,函数的单调性授课时间为1课时。

2.教材地位和作用

函数的单调性是函数的重要性质之一,是今后研究具体函数单调性的理论基础,在比较大小、解决函数图象、值域、最值以及证券市场分析、财务管理等专业课中均有广泛应用。

本课题是在学习了函数概念和函数图象基础上进行的一堂探究式的课堂教学。通过对本节课的学习,一方面让学生掌握函数单调性概念和用图象法判断函数单调性的方法,是对学生知识结构不断充实、完善的过程,另一方面又可进一步加深对函数本质的认识,起到承上启下的作用。本节中利用函数图象来研究函数性质的数形结合思想将贯穿于整个中职数学教学。

二、学情分析

教学目标的制定与实现,关键取决于我们对学习者研究的程度,主要有以下几个方面:学习者原有的认知结构,认知能力,学习习惯,情感态度等。

在知识上,学习过函数概念、图象和具体一次、二次、正(反)比例函数的图象和性质,但是对知识的理解上存在漏洞和错误的地方;在能力上,会计专业学生直观观察、分析能力较强,但是主动迁移、主动整合能力较弱;在情感上,畏难情绪强,探索精神不足,但是,专业兴趣浓,可以营造与专业相结合的教学情境来激发学生的兴趣和探究活动;在学习习惯上,中职生小动作较多,学习时抗干扰能力不强,需要不断的加以引导。根据上述教学内容的`地位和作用,结合教学大纲和学生的实际,确定以下教学目标、教学重点和难点。

三、教学目标

【三维目标】

(1)知识与技能(主要从了解、理解、掌握、应用四个层次来分析)

理解函数的单调性概念,掌握用图象法判断函数单调性,了解函数单调性的初步应用。

(2)过程与方法

通过从直观到抽象、从图形语言到数学语言的推进,培养学生数形结合的思想和观察、分析、概括的能力。

(3)情感态度与价值观

①通过本节课的教学,启示学生养成细心观察、自主探究的良好习惯。

②让学生了解数学源于生活用于生活,增强中职生的数学实践意识,同时与专业相结合,激发学习兴趣,树立正确的数学学习观。

【教学重点难点】

(1)教学重点

理解函数的单调性概念。

(2)教学难点

在形成增函数、减函数概念过程中,如何引导学生实现从图形语言到数学语言的转化。

说难点:函数单调性概念的研究经历了从直观到抽象,从图形语言到数学语言的转化,这对数学素养薄弱的中职学生来说是一个难点。

四、教法设计

针对本节课的特点和学生专业需求,老师采用与专业相结合的情境导入新课,在例题分析中将情境问题数学化并加以应用,在课外作业中让学生利用函数图形特征开展“函数图形在证券投资中的应用”研究性学习,整个流程设计基本做到课前有引入,课中有应用,课外有实践。本节课采用的教学方法是“体验探究式”教学法,通过创设情境,在老师引导下,学生主动观察、自主探究,完成对新知识的建构。

教学手段:多媒体、实物投影仪

五、学法指导

紧紧围绕数形结合这根主线。从知识的开始建构一直到应用全都穿在数形结合这根线上。

充分利用信息技术的优势。建构主义理论认为,学习是学习者主动的意义建构过程,强调学习的主动性、社会性和情境性。在教学过程中,通过设置与专业相结合的教学情景,充分利用多媒体的动态演示功能,学生在教师的启发引导下,完成从直观到抽象的知识形成过程,体验主动参与、积极思考、尝试探索的学习活动,从中感受到了学习数学的快乐,有助于培养中职生自主学习的能力和习惯。

六、教学流程

创设情境,引入新课

共同探究,建构知识

知识应用,巩固理解

回顾总结,形成体系

兼顾差异,分层练习

教学反思,深化理解

2024高中数学教案完整版 篇4

各位评委老师:

大家好!

我是本科数学xx号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。

一、教材分析

1、教材的地位和作用

(1)本节课主要对函数单调性的学习;

(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

(3)它是历年高考的热点、难点问题

(根据具体的课题改变就行了,如果不是热点难点问题就删掉)

2、教材重、难点

重点:函数单调性的定义

难点:函数单调性的证明

重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

二、教学目标

知识目标:(1)函数单调性的.定义

(2)函数单调性的证明

能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

情感目标:培养学生勇于探索的精神和善于合作的意识

(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

三、教法学法分析

1、教法分析

“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

2、学法分析

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

(前三部分用时控制在三分钟以内,可适当删减)

四、教学过程

1、以旧引新,导入新知

通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的',而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

2、创设问题,探索新知

紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

3、例题讲解,学以致用

例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

4、归纳小结

本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

5、作业布置

为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题1.3A组1、2、3,二组习题1.3A组2、3、B组1、2

6、板书设计

我力求简洁明了地概括本节课的学习要点,让学生一目了然。

(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)

五、教学评价

本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

(这一部分不能缺,话语可适当精简)

以上就是我对本节课的设计,谢谢!

板书设计:

1.3.1函数单调性与最大(小)值

一、定义二、例1.

(-∞,0)X1,X2X1f(X2)↙

X1-X20↙2.

2024高中数学教案完整版 篇5

说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。

一、说教材

1、教材的地位、作用及编写意图

《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其 他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

2、教学目标的确定及依据。

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

(2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。

(3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

(4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;

难点:利用指数函数的图象和性质得到对数函数的图象和性质;

关键:抓住对数函数是指数函数的反函数这一要领。

二、说教法

教学过程是教师和学生共同参与的`过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。

(2)采用“从特殊到一般”、“从具体到抽象”的方法。

(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

(4)多媒体演示法。

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四、说教学程序

1、复习导入

(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

2、认定目标(出示教学目标)

3、导学达标

按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动.

(1)对数函数的概念

引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。 把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。

设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。

因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

(2)对数函数的图象

提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x= , , ,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象.

方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。

设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。

这样可以充分调动学生自主学习的积极性。

(3)对数函数的性质

在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。

作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。

设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

4、巩固达标(见课件)

这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。

5、反馈练习(见课件)

习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

6、归纳总结(见课件)

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

7、课外作业 :(1)完成P178 A组1、2、3题

(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?

五、说板书

板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

2024高中数学教案完整版 篇6

【教学目标】

1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思

2.过程与方法:理解函数单调性的概念:能用自己的语言表述概念;并能根据函数的图象指出单调性、写出单调区间

3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性

【教学重难点】

教学重点:函数的单调性的概念。

教学难点:利用函数单调的`定义证明具体函数的单调性

【教学过程】

一、复习提问

1.复习:观察图像,说明函数y=x+1,y=-x+1,y=x2的增减性

2.引入:通过y=x2图像讲解用符号语言表达函数单调性,进而引导学生理解单调性定义

二、新授

通过图像讲解增函数定义,利用类比思想引导学生表达减函数定义

三、例题讲解

1.根据定义,研究函数f(x)=kx+b(k≠0)的单调性

2.求证:函数f(x)=x+x1在(0,1)上是减函数

四、小结

五、作业

1.证明函数f(x)=3x+2在R上是增函数.

2.证明函数f(x)=-在(-∞,0)上单调递增.

猜你喜欢