作为一位杰出的教职工,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计要怎么写呢?以下是小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。
高中数学教案大全模板 篇1
教学准备
教学目标
1、掌握平面向量的数量积及其几何意义;
2、掌握平面向量数量积的重要性质及运算律;
3、了解用平面向量的数量积可以处理垂直的问题;
4、掌握向量垂直的条件。
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程
1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。
并规定0向量与任何向量的数量积为0。
×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的'数量积是一个实数,不是向量,符号由cosq的符号所决定。
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。
高中数学教案大全模板 篇2
教学目标:
1.理解流程图的选择结构这种基本逻辑结构.
2.能识别和理解简单的框图的功能.
3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.
教学方法:
1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.
2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.
教学过程:
一、问题情境
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为
其中(单位:)为行李的重量.
试给出计算费用(单位:元)的一个算法,并画出流程图.
二、学生活动
学生讨论,教师引导学生进行表达.
解 算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.
在上述计费过程中,第二步进行了判断.
三、建构数学
1.选择结构的概念:
(1)先根据条件作出判断,再决定执行哪一种
(2)操作的结构称为选择结构.
如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.
2.说明:
(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点.
3.思考:教材第7页图所示的算法中,哪一步进行了判断?
高中数学教案大全模板 篇3
一、教学目标
1.知识与技能
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点
重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规
四、教学思路
(一)创设情景,揭示课题
1.我们都学过画画,这节课我们画一物体:圆柱
把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
练习反馈
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影
投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本P16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1.书画作业,课本P17练习第5题
2.课外思考课本P16,探究(1)(2)
高中数学教案大全模板 篇4
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
教学重点、难点:
求曲线的方程。
教学用具:
计算机。
教学方法:
启发引导法,讨论法。
教学过程:
【引入】
1、提问:什么是曲线的方程和方程的曲线。
学生思考并回答。教师强调。
2、坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。
【问题】
如何根据已知条件,求出曲线的方程。
【实例分析】
例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。
首先由学生分析:根据直线方程的知识,运用点斜式即可解决。
解法一:易求线段的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。
证明:(1)曲线上的点的坐标都是这个方程的解。
设是线段的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点的坐标是方程的解。
(2)以这个方程的解为坐标的点都是曲线上的点。
设点的坐标是方程①的任意一解,则
到、的距离分别为
所以,即点在直线上。
综合(1)、(2),①是所求直线的方程。
至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的.垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设是线段的垂直平分线上任意一点,也就是点属于集合
由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。
这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。
让我们用这个方法试解如下问题:
例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。
分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。
求解过程略。
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合
;
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点。
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。
下面再看一个问题:
例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。
【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。
解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合
由距离公式,点适合的条件可表示为
①
将①式移项后再两边平方,得
化简得
由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。
【练习巩固】
题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。
根据条件,代入坐标可得
化简得
①
由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?
【作业】课本第72页练习1,2,3;
高中数学教案大全模板 篇5
教材分析:
三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。
教案背景:
通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.
教学方法:
以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。
教学目标:
借助单位圆探究诱导公式。
能正确运用诱导公式将任意角的三角函数化为锐角三角函数。
教学重点:
诱导公式(三)的推导及应用。
教学难点:
诱导公式的应用。
教学手段:
多媒体。
教学情景设计:
一.复习回顾:
1. 诱导公式(一)(二)。
2. 角 (终边在一条直线上)
3. 思考:下列一组角有什么特征?( )能否用式子来表示?
二.新课:
已知 由
可知
而 (课件演示,学生发现)
所以
于是可得: (三)
设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。
设计意图:结合学过的公式(一)(二),发现特点,总结公式。
1. 练习
(1)
设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。
(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)
三.例题
例3:求下列各三角函数值:
(1)
(2)
(3)
(4)
例4:化简
设计意图:利用公式解决问题。
练习:
(1)
(2) (学生板演,师生点评)
设计意图:观察公式特点,选择公式解决问题。
四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。
五.课后作业:课后练习A、B组
六.课后反思与交流
很荣幸大家来听我的课,通过这课,我学习到如下的东西:
1.要认真的研读新课标,对教学的目标,重难点把握要到位
2.注意板书设计,注重细节的东西,语速需要改正
3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作
4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣
5.上课的生动化,形象化需要加强
听课者评价:
1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。
2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。
3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。
4.评议者:引导学生通过网络进行探究。
建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。
(1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好
(2)这样子的教学可以提高上课效率,让学生更多的时间思考
(3)网络平台的使用,使得学生的参与度明显提高
(4)存在问题:
1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;
2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用
3.给学生答案,这个网页要进一步的修正,答案能否不要一点就出来
高中数学教案大全模板 篇6
一.教材分析。
( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学
( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思
想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫
二.学情分析。
( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四.重点,难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中q与1的关系。
五.教法与学法分析.
培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的.角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而
获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。
六.课堂设计
(一)创设情境,提出问题。(时间设定:3分钟)
[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]
提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?
高中数学教案大全模板 篇7
一、课题:
人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》
二、指导思想与理论依据:
《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。
三、教材分析:
本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。
四、学情分析:
在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的.需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。
五、教学目标:
(一)教学知识点:
1.对数的概念。
2.对数式与指数式的互化。
(二)能力目标:
1.理解对数的概念。
2.能够进行对数式与指数式的互化。
(三)德育渗透目标:
1.认识事物之间的相互联系与相互转化,
2.用联系的观点看问题。
六、教学重点与难点:
重点是对数定义,难点是对数概念的理解。
七、教学方法:
讲练结合法八、教学流程:
问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)
八、教学反思:
对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。
对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。
高中数学教案大全模板 篇8
教学目标:
①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。
③注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。
教学重点与难点:
对数函数的性质的`应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1比较数的大小
例1比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1
板书:
解:Ⅰ)当0
∵5.1loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数
∵5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.51,
log0.50.6
板书:略。
师:比较对数值的大小常用方法:
①构造对数函数,直接利用对数函数的单调性比大小;
②借用“中间量”间接比大小;
③利用对数函数图象的位置关系来比大小。
2函数的定义域,值域及单调性。
高中数学教案大全模板 篇9
教学目标
1使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;
2对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;
3掌握本章的全部定理和公理;
4理解本章的数学思想方法;
5了解本章的题目类型。
教学重点和难点
重点是理解本章的知识结构,掌握本章的全部定和公理;难点是理解本章的数学思想方法。
教学设计过程
一、本章的知识结构
二、本章中的概念
1直线、射线、线段的概念。
2线段的中点定义。
3角的两个定义。
4直角、平角、周角、锐角、钝角的概念。
5互余与互补的角。
三、本章中的公理和定理
1直线的公理;线段的公理。
2补角和余角的性质定理。
四、本章中的主要习题类型
1对直线、射线、线段的概念的理解。
例1下列说法中正确的是( )。
A延长射线OP B延长直线CD
C延长线段CD D反向延长直线CD
解:C因为射线和直线是可以向一方或两方无限延伸的,所以任何延长射线或直线的说法都是错误的。而线段有两个端点,可以向两方延长。
例2如图1-57中的线段共有多少条?
解:15条,它们是:线段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,FG。
2线段的和、差、倍、分。
例3已知线段AB,延长AB到C,使AC=2BC,反向延长AB到D使AD= BC,那么线段AD是线段AC的( )。
A.B. C. D.
解:B如图1-58,因为AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。
例4如图1-59,B为线段AC上的一点,AB=4cm,BC=3cm,M,N分别为AB,BC的中点,求MN的长。
解:因为AB=4,M是AB的中点,所以MB=2,又因为N是BC的中点,所以BN=1.5。则MN=2+1.5=3.5
3角的概念性质及角平分线。
例5如图1-60,已知AOC是一条直线,OD是∠AOB的平分线,OE是∠BOC的平分线,求∠EOD的度数。
解:因为OD是∠AOB的平分线,所以∠BOD= ∠AOB;又因为OE是∠BOC的平分线,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,
所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。
则∠EOD=90°。
例6如图1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC与∠COB的度数的比是多少?
解:因为∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。
又∠COD=90°,所以∠COB=30°。
则∠AOC=60°,(同角的.余角相等)
∠AOC与∠COB的度数的比是2∶1。
4互余与互补角的性质。
例7如图1-62,直线AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度数。
解:因为COD为直线,∠BOE=90°,∠BOD=45°,
所以∠COE=180°-90°-45°=45°
又AOB为直线,∠BOE=90°,∠COE=45°
故∠COA=180°-90°-45°=45°,
而AOB为直线,∠BOD=45°,
因此∠AOD=180°-45°=135°。
例8一个角是另一个角的3倍,且小有的余角与大角的余角之差为20°,求这两个角的度数。
解:设第一个角为x°,则另一个角为3x°,
依题义列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。
答:一个角为10°,另一个角为30°。
5度分秒的换算及和、差、倍、分的计算。
例9 (1)将4589°化成度、分、秒的形式。
(2)将80°34′45″化成度。
(3)计算:(36°55′40″-23°56′45″)。
解:(1)45°53′24″。
(2)约为8058°。
(3)约为9°44′11″(第一步,做减法后得12°58′55″;再做乘法后得36°174′165″,可以先不进位,做除法后得9°44′11″)
五、本章中所学到的数学思想
1运动变化的观点:几何图形不是孤立和静止的,也应看作不断发展和变化的,如线段向一个方向延长,就发展成为射线;射线向另一方向延长就发展成直线。又如射线饶它的端点旋转就形成角;角的终边不断旋转就变化成直角、平角和周角。从图形的运动中可以看到变化,从变化中看到联系和区别及特性。
2数形结合的思想:在几何的知识中经常遇到计算问题,对形的研究离不开数。正如数学家华罗庚所说:“数缺形时少直观,形缺数时难如微”。本章的知识中,将线段的长度用数量表示,利用方程的方法解决余角与补角的问题。因此我们对几何的学习不能与代数的学习截然分开,在形的问题难以解决时,发挥数的功能,在数的问题遇到困难时,画出与它相关的图形,都会给问题的解决带来新的思路。从几何的起始课,就注意数形结合,就会养成良好的思维习惯。
3联系实际,从实际事物中抽象出数学模型。数学的产生来源于生产和生活实践,因此学习数学不能脱离实际生活,尤其是几乎何的学习更离不开实际生活。一方面要让学生知道本章的主要内容是线和角,都在生活中有大量的原型存在,另一方面又要引导学生将所学的知识去解决某些简单的实际问题,这才是理论联系实际的观点。
六、本章的疑点和误点分析
概念在应用中的混淆。
例10判断正误:
(1)在∠AOB的边OA的延长线上取一点D。
(2)大于90°的角是钝角。
(3)任何一个角都可以有余角。
(4)∠A是锐角,则∠A的所有余角都相等。
(5)两个锐角的和一定小于平角。
(6)直线MN是平角。
(7)互补的两个角的和一定等于平角。
(8)如果一个角的补角是锐角,那么这个角就没有余角。
(9)钝角一定大于它的补角。
(10)经过三点一定可以画一条直线。
解:(1)错。因为角的两边是射线,而射线是可以向一方无限延伸的,所以就不能再说射线的延长线了。
(2)错。钝角的定义是:大于直角且小于平角的角,叫做钝角。
(3)错。余角的定义是:如果两个角的和是一个直角,这两个角互为余角。因此大于直角的角没有余角。
(4)对.∠A的所有余角都是90°-∠A。
(5)对.若∠A<90°,∠B<90°则∠A+∠B<90°+90°=180°.
(6)错。平角是一个角就要有顶点,而直线上没有表示平角顶点的点。如果在直线上标出表示角的顶点的点,就可以了。
(7)对。符合互补的角的定义。
(8)对。如果一个角的补角是锐角,那么这个角一定是钝角,而钝角是没有余角的。
(9)对。因为钝角的补角是锐角,钝角一定大于锐角。
(10)错。这个题应该分情况讨论:如果这三点在同一条直线上,这个结论是正确的。如果这三个点不在同一条直线上,那么过这三个点就不能画一条直线。
板书设计
回顾与反思
(一)知识结构(四)主要习题类型(五)本章的数学思想
略例1 1
· 2
(二)本章概念· 3
略· (六)疑误点分析
(三)本章的公理和定理·
例9
高中数学教案大全模板 篇10
教学目标:
1.掌握基本事件的概念;
2.正确理解古典概型的两大特点:有限性、等可能性;
3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.
教学重点:
掌握古典概型这一模型.
教学难点:
如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.
教学方法:
问题教学、合作学习、讲解法、多媒体辅助教学.
教学过程:
一、问题情境
1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?
二、学生活动
1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;
2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;
(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,
这6种情况的可能性都相等;
三、建构数学
1.介绍基本事件的概念,等可能基本事件的概念;
2.让学生自己总结归纳古典概型的'两个特点(有限性)、(等可能性);
3.得出随机事件发生的概率公式:
四、数学运用
1.例题.
例1
有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)
探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)
探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?
学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.
探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.
(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)
例2
一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中
一次摸出2只球,则摸到的两只球都是白球的概率是多少?
问题:在运用古典概型计算事件的概率时应当注意什么?
①判断概率模型是否为古典概型
②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.
教师示范并总结用古典概型计算随机事件的概率的步骤
例3
同时抛两颗骰子,观察向上的点数,问:
(1)共有多少个不同的可能结果?
(2)点数之和是6的可能结果有多少种?
(3)点数之和是6的概率是多少?
问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?
学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.
问题:点数之和是3的倍数的可能结果有多少种?
(介绍图表法)
例4
甲、乙两人作出拳游戏(锤子、剪刀、布),求:
(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.
设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.
2.练习.
(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.
(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..
(3)第103页练习1,2.
(4)从1,2,3,…,9这9个数字中任取2个数字,
①2个数字都是奇数的概率为_________;
②2个数字之和为偶数的概率为_________.
五、要点归纳与方法小结
本节课学习了以下内容:
1.基本事件,古典概型的概念和特点;
2.古典概型概率计算公式以及注意事项;
3.求基本事件总数常用的方法:列举法、图表法.
高中数学教案大全模板 篇11
内容分析:
1、 集合是中学数学的一个重要的基本概念
在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础
例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明
然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
这节课主要学习全章的引言和集合的基本概念
学习引言是引发学生的学习兴趣,使学生认识学习本章的意义
本节课的教学重点是集合的基本概念。
集合是集合论中的原始的、不定义的概念
在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识
教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集
”这句话,只是对集合概念的描述性说明。
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)。
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}
(2)正整数集:非负整数集内排除0的集,记作N*或N+,N*={1,2,3,…}
(3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…}
(4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}
(5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的.集,记作N*或N+
Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写。